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Abstract Waves in ideal dissociating gases are examined in the limit of large dissociation temperatures. Both
strong shock waves and weak finite-amplitude signalling problems are considered. The shock analysis is based on
the Freeman limit, and an extension to higher Mach numbers is given. Even small-amplitude near-field theories,
which are concerned with times comparable to the signal scale, can contain nonlinear exponential terms when
the dissociation temperature is large. A corresponding endothermic Clarke equation is derived and solutions are
determined in the Newtonian limit. Far-field theory, involving both convective and chemical nonlinearities, is also
discussed. Suitable high-frequency solutions are obtained, together with results for the evolution of the shock path
and the decay of the signal amplitude.
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1 Introduction

The concept of an ideal dissociating gas was introduced by Lighthill [1] who showed that in the equilibrium limit
the behavior of many dissociating gases was essentially controlled by two parameters: a characteristic dissociation
density ρ′D , and a characteristic dissociation temperature �′D . This observation was supplemented by a simple
model for the internal energy content. As observed by Freeman [2], addition of a suitable rate law enables the
approach to be extended in a straightforward manner to nonequilibrium flows. Use of the ideal model allows focus
to be placed on the principal features of a broad class of aerothermodynamic problems. Early applications were
discussed by Clarke and McChesney [3, Chap. 6] and by Vincenti and Kruger [4, Chap. VIII]. Characteristic dimen-
sionless values ρD and �D are usually large and result in finite levels of the atomic mass fraction. In this paper,
the analysis is concerned with wave propagation in an ideal dissociating gas when the dissociation temperature is
large. A description of this limit requires inclusion of exponential terms that are not present in either classical linear
theories nor in some standard far-field theories that incorporate convective nonlinearities.

Properties of the ideal dissociating gas arebriefly reviewed in Sect. 2, where a simple extension is made with
respect to the internal energy model. Details of the equilibrium limit, the relevant high- and low-frequency sound
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speeds, and the characteristic form of the governing non-equilibrium equations are also given in Sect. 2. The high-
frequency sound speed corresponds to the frozen limit in which the dissociation mass fraction remains constant,
and the low-frequency sound speed is defined by thermodynamic equilibrium.

In part, the early paper by Freeman [2] was concerned with the structure of the dissociation region behind
strong shock waves, and an analysis was given for the limit in which there is a balance between the dissociation
energy and the kinetic energy. For this case, although the dissociation temperature is large compared with the
upstream temperature, it is not large compared with the temperature downstream of the shock. Nevertheless, the
corresponding dissociation density is still large compared with downstream levels. A discussion based on the latter
limit is presented in Sect. 3 where a comparison is made with numerical results. It is shown that the value of the
Freeman parameter µF = 1

2U ′2/R�′D , where U ′ is the shock speed and R is the molecular gas constant, provides
a clear distinction between the controlling decay mechanisms associated with dissociation and recombination.

An excellent early treatment of relaxation effects in waves of finite amplitude was given by Lighthill [5], where a
discussion of the far-field balance between weak convective steepening and diffusive effects due to the rate process
was presented; these flows are controlled by Burgers’ equation. Simple linear near-field theory, which does not
include convective steepening or exponential nonlinearities associated with the chemistry, leads to a third-order
wave equation in which the high-frequency propagation speed is defined by the frozen limit, and the low-frequency
speed by the equilibrium value. Numerous studies of the properties of this equation are available in the literature; see
[3, Chap. 6; 4, Chap. VIII; 6]. At large dissociation temperatures, however, modifications of this linear equation are
required. A related analysis for the propagation of small disturbances in a combustible mixture at large activation
energies has been described by Clarke [7]. He showed that even in the near-field the low-frequency operator is now
applied to an exponentially nonlinear term and that the low-frequency wave speed corresponds to the isothermal
sound speed. By using a similar strategy for an ideal dissociating gas, at large dissociation temperatures, a result
corresponding to the Clarke equation can be obtained. Details are given in Sect. 4. For combustion the process is
exothermic, but for dissociation the overall process is endothermic. This leads to an obvious sign difference between
the two equations; a compressive disturbance in the combustion case can lead to ignition, but for dissociation the
wave amplitude is weakened by heat loss.

Direct solutions of the Clarke equation, or its endothermic counterpart, do not seem to be possible. Numerical
investigations of the exothermic case can be found in [8] and in [9], where local structures based on coordinate
expansions were obtained. In the Newtonian limit, however, an analytical approach was developed by Blythe and
Crighton [10]. For this limit the two sound speeds are close together and considerable progress can be made. Related
approximations for relaxing gases, without the exponential nonlinearity, can be found in [11–13]. Use of this limit
is discussed in Sect. 4 for the ideal dissociating gas. Even at large dissociation temperatures it is found that, as in
[11], part of the near field is now governed by the telegraph equation, and the relevant large time behavior of this
equation is described.

High-activation-energy far-field theories including convective nonlinearities have been outlined in [14,15]. A
corresponding analysis for the ideal dissociating gas is presented in Sect. 5 for a high-frequency limit in which both
convective and chemical nonlinearities are important. The solution of the resulting evolution equation is obtained
for a general input signal, and implications for shock formation and propagation, together with asymptotic decay
laws for the shock strength, are determined.

2 Thermodynamic model and conservation laws

The ideal dissociating-gas model was originally developed by Lighthill [1] for the equilibrium case and extended
to non-equilibrium situations by Freeman [2]. For the assumed chemistry,

A2→← A+ A, (2.1)

the equilibrium atomic mass fraction αe is defined by

α2
e

1− αe
= ρ′D

ρ′
exp

(−D′en/kT ′
)

(2.2)
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Fig. 1 Equilibrium curves for various densities
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Fig. 2 Equilibrium shock values

where D′en is the dissociation energy, k is Boltzmann’s constant, T ′ is the gas temperature, and ρ′ is the gas density.
In (2.2) ρ′D(T ′) is a characteristic density which, for the ideal dissociating gas, is assumed constant; the variation
with temperature was discussed in [1]. In (2.2) it is also convenient to set

�′D = D′en/k, (2.3)

where �′D is a characteristic dissociation temperature. When compared with standard atmospheric conditions
(ρ′atm, T ′atm), dimensionless values are

Gas ρDa = ρ′D/ρ′atm �Da = �′D/T ′atm

O2 1.2× 105 200
N2 1.2× 105 380

(Note that ρ′atm corresponds to the specific gas listed.) Typical equilibrium mass fractions are shown in Fig. 1.
In the general non-equilibrium case the atomic mass fraction must be determined through the rate law and

appropriate thermodynamic models. For the mixture of atoms and molecules, the state equation is

p′ = Rρ′T ′ (1+ α) (2.4)

where p′ is the pressure, α is the actual atomic mass fraction, R = k/2m is the molecular gas constant, and m
is the atomic mass. Assuming that the translational and rotational modes are fully excited and in thermodynamic
equilibrium, the specific internal energy can be written for a dissociating diatomic gas as

e′ =
(

5

2
+ α

2

)
RT ′ + (1− α) e′vib + R�′Dα, (2.5)

where e′vib is the vibrational energy contribution. For simplicity, Lighthill assumed that this internal mode was also
in thermodynamic equilibrium (the time scale for adjustment of the vibrational mode is typically much less than
that required to reach the equilibrium balance between dissociation and recombination), and that it could be treated
as half-excited with

e′vib =
1

2
RT ′.

This leads to

e′ = 3RT ′ + R�′Dα.

At very elevated temperatures, a more realistic assumption may be that of full excitation with e′vib = RT ′, which
gives

e′ =
(

7

2
− α

2

)
RT ′ + R�′Dα.
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Here, for convenience, (2.5) is re-written as

e′ = 1

γ − 1
RT ′ + R�′Dα, (2.6)

where, in general, the effective specific heat ratio γ = γ
(
T ′, α

)
. For the classical ideal dissociating gas γ = 4/3.

The fully excited assumption also yields γ = 4/3 for α = 1, γ = 17/14 for α = 1/2, and γ = 9/7 for α = 0.
There is little difference among these values and, in the spirit of the ideal dissociating gas approximation, γ is taken
as constant throughout this paper.

For either the frozen or the equilibrium limits, it is permissible to define the specific entropy s′ by

T ′ds′ = de′ + p′d
(
1/ρ′

)
. (2.7)

When describing the evolution of disturbances in a dissociating gas, one can anticipate that two particular sound
speeds will be of interest. Specifically, these are the frozen sound speed defined by

a′2 = ∂p′

∂ρ′

∣∣
∣∣
s′,α
= {γ + (γ − 1) α} p′

ρ′
, (2.8)

and the equilibrium sound speed given by

a′2e =
∂p′

∂ρ′

∣∣∣∣
s′,α=αe

=

⎧
⎪⎨

⎪⎩

1+ 2 T ′
�′D
+ 2γ+3(γ−1)αe−(γ−1)α3

e
(γ−1)αe(1−α2

e )
T ′2
�′2D

1+
{

2−αe
(γ−1)αe(1−αe)

}
T ′2
�′2D

⎫
⎪⎬

⎪⎭

p′

ρ′
(2.9)

(see [4, p. 261]). Inspection of (2.9) indicates that, when �′D � T ′,

a′e →
√

p′
ρ′

, (2.10)

which corresponds to the isothermal frozen sound speed, i.e.,

a′T =
(√

∂p′
∂ρ′

)∣∣
∣∣∣
T ′,α
=

√
p′
ρ′

. (2.11)

As noted above, a description of the non-equilibrium process requires specification of a suitable rate law. Freeman
[2] adopted the model

∂t ′α = Cρ′T ′−n
{
(1− α) exp

(−�′D/T ′
)− (

ρ′/ρ′D
)
α2

}
, (2.12)

where ∂t ′ denotes the one-dimensional convective operator

∂t ′ ≡ ∂

∂t ′
+ u′ ∂

∂x ′
(2.13)

in which u′ is the gas velocity in the x ′-direction and t ′denotes time. Throughout the present paper the exponent n
in the rate equation is taken to be zero. The group

Cρ′ (1− α) exp
(−�′D/T ′

)

represents the dissociation rate, and

Cρ′
(
ρ′/ρ′D

)
α2

is the recombination rate. A balance between these rates leads to the equilibrium law (2.2).
For one-dimensional unsteady flow, conservation of mass, momentum, and energy requires that

∂t ′ρ′ + ρ′ux ′ = 0, ∂t ′u′ + ρ′−1 px ′ = 0, ∂t ′e′ + p′∂t ′
(
ρ′−1

) = 0, (2.14)
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where the subscript x ′ denotes differentiation with respect to x ′. The equations are re-expressed in dimensionless
form by introducing suitable reference quantities

p′r , ρ′r , T ′r = p′r/Rρ′r , e′r = p′r/ρ′r , and u′r =
√

p′r/ρ′r , (2.15)

together with a time scale t ′r defined by the applied signal. Dimensionless time and distance scales are

t = t ′/t ′r , x = x ′/u′r t ′r , (2.16)

and the equations can be written in dimensionless characteristic form as

∂± p ± ρa∂±u = −bρ�D�,

∂t p − a2∂tρ = −bρ�D�,

∂tα = � = λρ
{
(1− α) exp (−�D/T)− ερα2

}
.

(2.17)

Here

b = 1

ρ�D

∂e/∂α

∂e/∂p
= (γ − 1) (1+ α)− (T/�D) ,

�D = Rρ′r�′D/p′r , ε = ρ′r/ρ′D, λ = C ′ρ′r t ′r ,
(2.18)

and λ is the dimensionless rate parameter. The characteristic operators in (2.17) are

∂± ≡ ∂

∂t
+ (u ± a)

∂

∂x
. (2.19)

Corresponding to (2.4), the dimensionless equation of state is

p = ρT (1+ α). (2.20)

3 Shock structure

3.1 The Freeman limit

The non-equilibrium zone behind a strong shock wave in an ideal dissociating gas was examined by Freeman [2]
for the large-dissociation-energy limit. Specifically, Freeman considered the case when

µF = mU ′2

D′en
= O (1), (3.1)

where U ′ is the shock speed. Numerical solutions were presented for various µF and inverse dissociation densities
ε. A similar limit is considered in this section where an analysis is given for the case µF = O(1) with ε � 1.
Upstream of the shock front it is assumed that equilibrium conditions hold and, subject to (3.1), it follows that the
equilibrium mass fraction is exponentially small in this region and can be ignored. If the reference state (2.15) for
the dependent variables is defined by conditions in the upstream region, the relation (3.1) can be re-expressed as

µF = γ M2
1

2�D
, (3.2)

where M1 is the shock Mach number based on the upstream frozen sound speed. Equivalently, �D = O
(
M2

1

)
.

Using the upstream state as the reference condition, the steady one-dimensional conservation relations reduce to

ρu = γ
1
2 M1, p + ρu2 = 1+ γ M2

1 ,
	

	 − 1

p

ρ
+�Dα + 1

2
u2 = γ

γ − 1
+ γ

2
M2

1 , (3.3)

where

	 = γ + (γ − 1) α (3.4)
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is the frozen specific heat ratio. By viewing q = �Dα as the heat extraction (see [16]), the usual Rayleigh-line
relation holds, i.e. using the first two relations in (3.3)

p − 1 = γ M2
1

(
1− ρ−1

)
. (3.5)

Similarly, the Hugoniot relation connecting p, ρ, and q can be written

p = 2q + ρ−1 − ((γ + 1)/(γ − 1))

1− ((	 + 1)/(	 − 1)) ρ−1 . (3.6)

From (3.2), (3.5), and (3.6), with �D � 1, it follows that within the subsonic relaxation zone behind the strong
shock the leading approximations to the flow variables can be written

p = γ M2
1

1+ D

	 + 1
,

u

γ
1
2 M1

= ρ−1 = 	 − D

	 + 1
,

T

γ M2
1

= φ = (	 − D) (1+ D)

(	 + 1)2 (1+ α)
, (3.7)

where

D =
√

1+ (
	2 − 1

)
(α/µF). (3.8)

Prior to evaluating the non-equilibrium solution, it is helpful to obtain the equilibrium solutions for various µF at a
fixed value of �D. These are displayed in Fig. 2. Note that µF is a monotonically increasing function of the shock
Mach number at fixed �D. In Fig. 2

φ(αe) = φe = T (αe)

γ M2
1

= (	 − D) (1+ D)

(	 + 1)2 (1+ α)

∣∣∣∣
α=αe

(3.9)

is a scaled temperature. The equilibrium solutions satisfy

α2
e

1− αe
= 1

ερe
exp (−1/2µFφe) , (3.10)

where ρe is defined by (3.7) with α = αe. Clearly, for µF > 2 the equilibrium state corresponds to complete
dissociation with αe ≈ 1. For this limit, it is seen from (3.10) that

αe = 1− ερe (1) exp (1/2µFφe(1))+ O(ε2). (3.11)

The behavior of the temperature φe seems surprising, but it is readily established that

φe → 2 (γ − 1)

(γ + 1)2 as αe → 0, and φe ∼ (γ − 1)

2γ 2

{
1− γ (2− γ )

µF
+ O

(
ε, µ−2

F

)
. . .

}
as ε, µ−1

F → 0.

Both these results are consistent with Fig. 2.
The dimensionless form of the rate law for steady flow is

u
dα

dx
= λρ

{
(1− α) exp (−1/2µFφ)− ερα2

}
, (3.12)

and the dimensionless dissociation rate

λρ (1− α) exp (−1/2µFφ) ,

vanishes when either α → 1 or φ → 0. The distinction between these limits has important consequences for the
asymptotic analysis, and the results shown in Fig. 2 suggest that the former limit is the appropriate one for µF � 1.
Inspection of (3.7) indicates that φ = 0 occurs when D = 	, which is equivalent to α = µF. Because α increases
monotonically behind the shock wave (dissociation can be neglected upstream of the shock), it follows that

α = 1 would occur prior to φ = 0 for µF > 1;
φ = 0 would occur prior to α = 1 for µF < 1.

(3.13)

Equilibrium, however, can be attained prior to either of these events.
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3.2 Freeman parameter µF > 1, large dissociation density ε−1 � 1

Here it is assumed that the rate parameter λ and a factor γ
1
2 M1 have been incorporated into the distance coordinate

x , whose origin is at the shock. As ε→ 0, with µF = O(1), the basic expansion for x = O(1) is

α = α0 (x)+ εα1 (x)+ . . . . (3.14)

Using (3.12), with α = 0 at x = 0, gives the first-order solution

x =
∫ α0

0

exp (1/2µFφ (s))

ρ2 (s) (1− s)
ds =

∫ α0

0

A (s)

(1− s)
ds, (3.15)

where ρ(α0), φ(α0) are defined by (3.7) with α = α0. With µF > 1, the limiting behavior as x →∞ is associated
with α0 → 1 and it can be established that

α0 ∼ 1− k0 exp (−ω0x)+ · · · , (3.16)

where

ω0 = 1/A(1), k0 = exp(ω0 K0), and K0 =
∫ 1

0

A(s)− A(1)

1− s
ds. (3.17)

Similarly, it can be established that

α1 = −1− α0

A(α0)

∫ α0

0

B(s)

(1− s)2 ds, (3.18)

where

B (α) = α2ρ3(α)A2(α). (3.19)

Straightforward calculations indicate that as x →∞ (α0 → 1)

α1 ∼ − B(1)

A(1)
+ k0

(
B ′(1)

A(1)
ω0x − ω0 K0

B ′(1)

A(1)
+ f1

)
exp (−ω0x)+ · · · , (3.20)

where

f1 = − B(1)
(

A′(1)− A(1)
)

A2(1)
+ 1

A(1)

∫ 1

0

B(s)− B(1)− B ′(1) (s − 1)

(1− s)2 ds. (3.21)

Inspection of the exponentially small terms in (3.16) and (3.20) indicates that this expansion is not uniformly valid
when x = O(ε−1). This difficulty is easily removed by either a multiple scales approach or, more simply, by using
the PLK technique [17]. In this method the leading-order secular behavior is eliminated by replacing ω0 by ω,
where to O (ε)

ω = ω0
(
1− (

B ′(1)/A(1)
)
ε + · · ·) . (3.22)

If necessary, a suitable composite solution correct to O(ε) can be constructed from (3.15), (3.16), (3.18), (3.20)
and (3.22). This solution implies that the equilibrium value (x →∞) is

αe = 1− ε (B(1)/A(1))+ · · · = 1− ερe(1) exp (1/2µFφe (1))+ · · · , (3.23)

in agreement with (3.11). If α∞ = αe∞ is the limiting value of the mass fraction, then from (3.12) the exact value
for the inverse of the decay length is

� = 1

A∞

(
2− α∞

α∞

) (
1−

(
dαe

dα

)

∞

)
. (3.24)

It is straightforward to show that (3.22) is consistent, up to termsO (ε), with the exact result (3.24).
In Fig. 3 the asymptotic theory is compared with the exact numerical solution for ε = 10−5, µF = 2. Employing

this value of µF is a fairly severe test for the asymptotic limit (see discussion in Sect. 3.3 below), but the agree-
ment is excellent. The final decay law predicted by the PLK value (3.22) gives ω ≈ 0.597, and the exact result is
� = 0.589 . . ..
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3.3 Large dissociation density at finite µF

When µF = O (1) the final equilibrium value of the mass fraction is not necessarily close to unity. In this case the
theory given in Sect. 3.2, which is valid when the dominant decay is controlled by α→ 1, is not valid. Technically,
the solution presented in Sect. 3.2 requires that µF be large, but as observed above the approach gives excellent
results even for µF = 2.

In situations where αe∞ < 1 with µF = O (1), it is convenient to rewrite the rate law as
dα

dx
= ερ3

{
αe (1− α)+ α

1− αe

}
(αe − α) (3.25)

where factors of λ, γ− 1
2 M−1

1 have again been incorporated into the length scale x . This limit corresponds to the
numerical data presented in [2]. An example for µF = 1 is also shown in Fig. 3.

When µF � 1, the equilibrium mass fraction is exponentially small. Although suitable results can be obtained,
that case is not pursued here.

4 Unsteady wave propagation: near-field limits

4.1 Linear near-field theory

Before discussing the nonlinear near-field theory associated with �D � 1 (see Sect. 4.2), it is useful to outline
the fully linear theory. Reviews of linear near-field theories for reacting gases can be found in [3, pp. 182–201; 4,
pp. 254–281]. Similar near-field results have also been discussed by Chu [6] and by Moore and Gibson [11].
A corresponding equation for visco-elastic materials was derived in [18].

Small disturbance expansions of the form, where δ is an amplitude parameter,

p = 1+ δp1 (x, t)+ · · · , u = δu1 (x, y)+ · · · ,
T = T0 + δT1 (x, t)+ · · · , α = α0 + δα1 (x, t)+ · · · ,
etc.,

(4.1)

lead to a completely linear theory only if �Dδ � 1. In (4.1), T0 = (1+ α0)
−1and α0 is the initial background

(equilibrium) mass fraction. After some algebra it can be shown that for one-dimensional unsteady disturbances
the resulting wave equation is

∂

∂t

(
∂2T1

∂t2 − a2
0
∂2T1

∂x2

)
+ λ

(
∂2T1

∂t2 − a2
e0

∂2T1

∂x2

)
= 0, (4.2)
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which is the expected classical expression known to govern weak disturbances in a relaxing gas. Here a0 is the
frozen sound speed in the background reference state, and ae0 is the corresponding equilibrium sound speed. For
convenience, in (4.2) the time and distance scales (t, x) have been replaced by

εα0 (2− α0)

1− α0

cve0

cv f
· (t, x) (4.3)

where cv f = (γ − 1)−1 is the frozen specific heat at constant volume, and

cve0 = 1

γ − 1
+ α0 (1− α0)

2− α0
�2

D (1+ α0)
2 (4.4)

is the corresponding equilibrium value. From the results given in Sect. 2, the frozen sound speed

a0 =
√

γ + (γ − 1) α0, (4.5)

but when �D � 1 the equilibrium sound speed reduces to the isothermal value

ae0 = 1. (4.6)

Properties of (4.2) have been discussed at length in the literature (see e.g. [3, pp. 182–201; 4, pp. 254–281]).

4.2 Nonlinear near-field theory

If the restriction �Dδ� 1 is removed, the small-disturbance results discussed above are no longer valid. The expo-
nential nonlinearity that occurs in the rate law must be retained. Related studies for exothermic reactions have been
given in the corresponding large activation energy limit with application to ignition/combustion problems [7]. When

δ = O
(
�−1

D

)
, the expansion (4.1) is replaced by

p = 1+�−1
D (1+ α0)

−2 p1 (x, t)+ · · · , ρ = 1+�−1
D (1+ α0)

−2 ρ1 (x, t)+ · · · ,
T = T0 +�−1

D (1+ α0)
−2 T1 (x, t)+ · · · , u = �−1

D (1+ α0)
−2 u1 (x, t)+ . . . ,

α = α0 + (γ − 1)−1 �−2
D (1+ α0)

−2 α2 (x, t)+ · · · ,
(4.7)

where the factors (1+ α0)
−2 and (γ − 1)−1 have been inserted for later convenience. Note that now, because of

the term �Dα in the energy equation, the mass-fraction perturbation is O
(
�−2

D

)
. For clarity, the disturbance is

taken to be generated by a small amplitude piston motion and the corresponding initial and boundary conditions are

p1 = ρ1 = T1 = u1 = α2 = 0 at t = 0 in x > 0, (4.8)

with

u1 = f (t) on x = 0 for t > 0. (4.9)

In this section a factor

λ (γ − 1) α2
0ε�2

D (1+ α0)
2 (4.10)

is incorporated into the distance and time scales (x, t), and the signal scale is taken to be comparable to that defined
by (4.10). The piston is assumed to accelerate smoothly from rest with f (0) = 0, f ′(0) 
= 0.

From Sect. 2 and the expansion (4.7) the basic form of the governing equations can be written

∂ρ1

∂t
+ ∂u1

∂x
= 0,

∂u1

∂t
+ ∂p1

∂x
= 0,

T1 + α2 = (γ − 1) ρ1, p1 = a2
0ρ1 − (1+ α0) α2,

∂α2

∂t
= eT1 − 1.

(4.11)
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The corresponding evolution equation for the temperature is

∂

∂t

(
∂2T1

∂t2 − a2
0
∂2T1

∂x2

)
+

(
∂2

∂t2 −
∂2

∂x2

)
eT1 = 0. (4.12)

This should be contrasted with the basic linear result (4.2); in 4.12 the rate parameter λ has been included in the time
and distance scales. It can be seen that the low-frequency speed takes the isothermal value, and that the low-frequency
wave operator acts on the exponential nonlinearity associated with the dissociation rate. Equations of this type have
been used to discuss the propagation of weak disturbances in exothermic reacting mixtures and are referred to as
Clarke equations [7]. In the exothermic case the sign of the low frequency term is changed and solutions possess
logarithmic singularities that correspond to thermal ignition [8,9]. As discussed below, the endothermic (heat loss)
form of the Clarke equation leads to a decay of the applied signal.

Other than numerical solutions, a direct analytical attack on (4.12) does not seem possible. Similar remarks apply
to the exothermic case, but progress has been made through employment of the Newtonian limit γ→ 1 in which
the difference between the high- and low-frequency speeds is small [10]. An approach based on the assumption that
the sound speeds are close together was used by Moore and Gibson [11] to analyze the endothermic linear equation
(4.2). A Newtonian technique is used here to find the solution of (4.12), or more directly to solve the system (4.11).
An obvious criterion for the validity of the method is that

1� γ − 1� �−1
D . (4.13)

When (γ − 1) =  � 1, inspection of (4.11) and the initial and boundary conditions (4.8) and (4.9) shows that
the leading approximation for the temperature perturbation is simply T1 = 0, and correspondingly α2 = 0. These
results imply that the appropriate expansion with respect to  has the form

p1(x, t) = p10(x, t)+p11(x, t)+ · · · , T1(x, t) = T11 (x, t)+2T12 (x, t)+ · · · , etc. (4.14)

Consequently, in this limit the signalling problem is again linear. The characteristic form of (4.11) is

∂0± (p1 ± a0u1) = − (1+ α0) (∂α2/∂t) ,

with

∂0± ≡ ∂

∂t
± a0

∂

∂x
. (4.15)

In (4.15) and subsequent equations it is convenient to retain the full sound speed a0, rather than expand about unity.
From (4.11), (4.14), and (4.15) it can be seen that the flow field is described by the usual frozen high-frequency
relations

p10 = a2
0ρ10 = a0u10 = a0 f (ξ) (4.16)

where

ξ = t − x/a0, (4.17)

and f (t) is the applied signal, see (4.9). The leading-order thermal field is governed by

∂T11

∂t
+ T11 = ∂ρ10

∂t
= 1

a0
f ′(ξ) (4.18)

with

α21 = ρ10 − T11. (4.19)

Corresponding solutions satisfying the initial conditions (4.8) are

T11(ξ) = a−1
0

∫ ξ

0
es−ξ f ′(s)ds, α21(ξ) = a−1

0

∫ ξ

0
es−ξ f (s)ds. (4.20)

(For the imposed signal f (t) = 0, t ≤ 0.)
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Evaluation of higher-order terms in the expansion leads to

u11 = −1+ α0

2a2
0

xT11 (ξ) , p11 = −1+ α0

2a0
xT11 (ξ)− (1+ α0)

2
α21 (ξ) ,

ρ11 = −1+ α0

2a3
0

xT11 (ξ)+ (1+ α0)

2a2
0

α21 (ξ) .

(4.21)

Similar results can be obtained for T12(x, t) and α22(x, t). In all cases secular terms of the form xφ (ξ) are observed.
These suggest that the expansion fails for ξ = O(1) when t (or x) = O

(
−1

)
.

Suitable expansions of the form

p1 = p̄0 (τ, ξ)+ · · · , u1 = ū0 (τ, ξ)+ · · · , T1 = T̄1 (τ, ξ)+ · · · , α2 = ᾱ1 (τ, ξ)+ · · · etc., (4.22)

are sought. Here

τ = 

(
1+ α0

2a2
0

)

t, ξ = t − x/a0. (4.23)

(The factor in the definition of τ is for later algebraic convenience.) Substitution in the characteristic equations
(4.15) again leads to the standard high-frequency relations

p̄0 = a2
0 ρ̄0 = a0ū0; (4.24)

but now, using the rate and state equations, it can be shown that

∂ T̄1

∂ξ
+ T̄1 = 1

a0

∂ ū0

∂ξ
,

∂ ū0

∂τ
= −a0T̄1,

∂ᾱ1

∂ξ
= T̄1. (4.25)

Hence ū0 satisfies the telegraph equation

∂2ū0

∂τ∂ξ
+ ∂ ū0

∂τ
+ ∂ ū0

∂ξ
= 0. (4.26)

From (4.16), matching as τ → 0 requires that ū0 ∼ f (ξ). It follows from (4.26) that (see [11])

ū0 = e−(ξ+τ) ∂

∂ξ

{∫ ξ

0
I0

(
2
√

τ (ξ − s)
)

es f (s)ds

}
. (4.27)

For a pulse of width d, so that f (t) = 0, t ≥ d, it can be established from (4.27) that when τ � 1 and ξ � d then

ū0 ∼ A
τ

1
4

ξ
3
4

(
1+ O

(
1√
τξ

))
exp

(
− (τ + ξ)+ 2

√
τξ

)
, (4.28)

where use has been made of the asymptotic behavior of the Bessel function I0. In (4.28) the amplitude

A = 1

2
√

π

∫ d

0
es f (s)ds. (4.29)

Equation (4.28) can be simplified further by observing that to leading order

ξ − ξ̄ = τ, (4.30)

where

ξ̄ = x − t

is the linearized low-frequency characteristic (at high dissociation temperatures the low-frequency equilibrium
sound speed reduces to the isothermal value). From (4.29) and (4.30), with ξ̄ = o (τ ), it can be shown that

ū0 ∼ Aτ−
1
2 exp

(
−ξ̄2/4τ

)
, (4.31)

which, as could be anticipated, is a source solution of the diffusion equation centered on the equilibrium characteristic
leaving the origin.
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5 High-frequency far-field theory

The analysis described in Sect. 4 did not involve convective nonlinearities. Evolution of these disturbances over large
distances can lead to convective steepening of the wave form. Lighthill [5] discussed this effect for near-equilibrium
behaviors in a relaxing gas. Implicit in Lighthill’s analysis was the assumption that δ�D � 1. In this section a
description of the far-field solution is given for large dissociation energies when δ�D = O(1). No assumption is
made concerning the magnitude of γ − 1, but the effective rate parameter (see 4.10)

� = λ (γ − 1) α2
0ε�2

D (1+ α0)
2 (5.1)

is taken to be O
(
�−1

D

)
, which is also the amplitude scale δ; see (4.7). This provides a suitable distinguished

(high-frequency) limit. Nonlinear high-frequency analyses have been given for a relaxing gas at finite characteristic
temperatures in [12,13], and an early treatment of these problems for visco-elastic materials was presented in [19].
Results for exothermic reactions are described in [14,15]. For the present endothermic case, the solution derived
below does not appear to have been previously obtained.

Subject to (5.1), the dominant approximation for the near field is still described by the standard frozen results

p1(x, t) = a2
oρ1 (x, t) =

(
a2

0/(γ − 1)
)

T1 (x, t) = a0u1 (x, t) = a0 f (ξ1), α1(x, t) = 0. (5.2)

In (5.2) the factor � has not been incorporated into the time and distance scales, and

ξ1 = t − x/a0 (5.3)

is the linearized characteristic associated with the basic scales. Evaluation of higher-order terms using an expansion
in �−1

D reveals secular behaviors over a distance scale x = O(�−1
D ) with ξ1 = O(1). Suitable far field expansions

are, with � = O(�−1
D ),

p = 1+�−1
D P1 (ξ1, η1)+ · · · , u = �−1

D U1 (ξ1, η1)+ · · · , α = 1+�−2
D A1 (ξ1, η1)+ · · · , (5.4)

with similar expansions for the density and temperature. In (5.4)

t = �Dη1. (5.5)

As in (5.2) it is found that

P1 = a0U1, etc. and U1 ∼ f (ξ1) as η1 → 0. (5.6)

The characteristic relation associated with the operator ∂+ then leads to

∂U1

∂η1
−

(
a2

0 + 1

2a0

)

U1
∂U1

∂ξ1
= − ��D

2a2
0 (1+ α0)

[
exp

(
(γ − 1) (1+ α0)

2 U1

a0

)
− 1

]
. (5.7)

Changing variables through

V = (γ − 1) (1+ α0)
2 U1

a0
, ξ = (γ − 1)2 (1+ α0)

3 ��D

a2
0

(
a2

0 + 1
) ξ1 = Bξ1, η = (γ − 1) (1+ α0)��D

2a2
0

η1, (5.8)

reduces (5.7) to

∂V

∂η
− V

∂V

∂ξ
= −

(
eV − 1

)
. (5.9)

By use of (5.8), the initial condition (5.6) becomes

V = F(ξ) = (γ − 1) (1+ α0)
2 a−1

0 f (ξ/B). (5.10)

A related equation has been deduced for the exothermic case by Blythe [14] and by Clarke [15].
Introduction of the characteristic coordinate β through

∂ξ

∂η

∣
∣∣∣
β

= −V, (5.11)
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and taking ξ = β at η = 0, enables the solution of (5.11) to be written in parametric form as

V = − log
[
1− e−η

(
1− e−F(β)

)]
, (5.12)

and

ξ = β +
∫ η

0
log

[
1− e−s

(
1− e−F(β)

)]
ds. (5.13)

Solutions of this type are not necessarily unique. The evolution of the sine pulse

F(t) =
{

2 sin t, 0 ≤ t ≤ π,

0, t > π,
(5.14)

is shown in Fig. 4; clearly, the solution for η = 1 is no longer single-valued. Obtaining the appropriate single-valued
solution requires the insertion of suitable Rankine–Hugoniot shock waves. In general, difficulties with the solution
represented by (5.12) and (5.13) will arise when

∂ξ/∂β|η = 0.

It can be shown that these points are defined by

eη = eF(β) − 1

eF(β) − exp
(

eF(β)−1
F ′(β)

) . (5.15)

If both F and F ′are initially positive, then (5.15) will yield solutions with η > 0 provided that

F ′ > F−1
(

eF − 1
)

. (5.16)

If the smallest value of η occurs on the front, a shock will originate there with

η0s = log

(
F ′(0)

F ′(0)− 1

)
(5.17)

provided that F ′ (0) > 1. For the example shown in Fig. 4, the shock will originate on the front at η = log2.
From the shock relations (in which the right hand sides in (3.3) are replaced by appropriate local values with

[α] = (0)) it can be established for the weak limit corresponding to (5.9) that the shock path is governed by

dξs

dη
= −1

2
(V+ + V−) . (5.18)

Here V+ and V− denote the values at the shock on the characteristics β+ and β− that meet on either side of the
shock. In cases where the shock forms at the front, as in (5.13), the results (5.12), (5.13), and (5.18) can be used to
show that on the shock path

V
dηs

dβ
= 2

{
1+ F ′

eF − 1
(V − F)

}
, (5.19)

where V is defined by (5.12) with η = ηs . This equation is to be solved subject to

η = η0s at β = 0, (5.20)

and the parametric description of the shock path is completed by obtaining ξs (β) from (5.13) with η replaced by
ηs . The shock path for the pulse (5.14) is shown in Fig. 5.

A suitable measure of the shock strength is the scaled velocity V immediately behind the shock, and this quantity
is displayed in Fig. 6 for the profile (5.14). As η→∞, the final decay is defined by

Vs ∼ ξs − ξ∞ ∼ (1− F (β∞)) e−η, (5.21)

where ξ∞ and β∞ are the constant limiting values of ξ and β, respectively.

123



402 P. A. Blythe

η
0 1 2 3 4 5

−ξ

0.00

0.05

0.10

0.15

0.20

Fig. 5 Shock path for a sine pulse
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Fig. 6 Shock decay for a sine pulse

6 Concluding remarks

The simple ideal dissociating-gas model introduced by Lighthill [1] has proved to be an excellent tool for
investigating the basic structure of continuum non-equilibrium high-temperature gas flows. For the principal con-
stituents of air, nitrogen and oxygen, characteristic dissociation temperatures �D and dissociation densities ρD are
usually, in an appropriate dimensionless sense, large. Freeman [2] exploited the large dissociation-temperature limit
in describing shock structure at hypersonic speeds. In Sect. 3, these results were extended to larger values of the
Freeman parameter µF = γ M2

1 /2�D , or equivalently, to larger values of the shock Mach number M1.
Other early work that exploited �D � 1was concerned with expanding flows [20–22]. Although not discussed

here, these analyses examined supersonic nozzle flows in which the dissociation mass fraction freezes at some fixed
level well above the local equilibrium value αe. This strong departure from equilibrium can have a marked effect
on working section (test) conditions, and can lead to a significant loss of thrust in rocket engines. Judicious choices
of the dimensionless dissociation density and the rate parameter can generate frozen levels for which α = O (1),
even though αe � 1, [22]. Two-dimensional numerical solutions for expansion corners have been obtained and the
general properties are known, (see e.g. [23]), but the detailed structure of these flows could be investigated based
on the large dissociation energy limit.

Most of the present paper has been concerned with wave propagation in an ideal dissociating gas when �D � 1.
Again, parameter limits were considered in which the local mass fraction α = O (1), but now αe is also O (1). As
noted in Sect. 4b, even when the wave amplitude is small, exponential nonlinearities associated with the chemistry
must be taken into account. In the near field, disturbances are governed by an endothermic Clarke equation [7].
A discussion of the solution of this equation was given for the Newtonian limit γ → 1. In this limit, for which the
high- and low-frequency sound speeds are close together, it was shown that the large time asymptotic behavior is
equivalent to a diffusive source centered on a low-frequency characteristic. For the high-dissociation-temperature
limit, the equilibrium (low-frequency) sound speed reduces to the isothermal value (see Sect. 2). In general, even for
small amplitude signals. convective nonlinearities can affect the far field behavior. A discussion of weakly nonlinear

signalling problems is given in Sect. 5 for the distinguished limit when δ = O
(
�−1

D

)
, where δ is a dimensionless

measure of the signal amplitude. Only high-frequency signals are considered, i.e., the frequency of the applied
signal is large compared with the frequency defined by the effective relaxation time. The governing equation (5.9)
contains both convective and exponential nonlinearities, and the general solution is given in Sect. 5. An example is
presented there for the evolution of a compressive sine pulse, including the formation and evolution of a shock that
develops on the pulse front. Far-field behavior over a broader frequency range, in both expansive and compressive
flows, should be amenable to a large-dissociation-temperature analysis. For this limit, it would also be interesting to
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examine fully dispersed structures in which the diffusive effects of the rate process completely balance convective
steepening. A basic description of steady fully dispersed shock structure was presented by Lighthill [5].

Acknowledgements It is a pleasure to dedicate this paper to the memory of James Lighthill. I was a student at the University of
Manchester, both undergraduate and graduate, at the time when James was Head of Applied Mathematics. His undergraduate lectures
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